1,475 research outputs found

    Simultaneous Bidirectional Link Selection in Full Duplex MIMO Systems

    Full text link
    In this paper, we consider a point to point full duplex (FD) MIMO communication system. We assume that each node is equipped with an arbitrary number of antennas which can be used for transmission or reception. With FD radios, bidirectional information exchange between two nodes can be achieved at the same time. In this paper we design bidirectional link selection schemes by selecting a pair of transmit and receive antenna at both ends for communications in each direction to maximize the weighted sum rate or minimize the weighted sum symbol error rate (SER). The optimal selection schemes require exhaustive search, so they are highly complex. To tackle this problem, we propose a Serial-Max selection algorithm, which approaches the exhaustive search methods with much lower complexity. In the Serial-Max method, the antenna pairs with maximum "obtainable SINR" at both ends are selected in a two-step serial way. The performance of the proposed Serial-Max method is analyzed, and the closed-form expressions of the average weighted sum rate and the weighted sum SER are derived. The analysis is validated by simulations. Both analytical and simulation results show that as the number of antennas increases, the Serial-Max method approaches the performance of the exhaustive-search schemes in terms of sum rate and sum SER

    Sub-channel Assignment, Power Allocation and User Scheduling for Non-Orthogonal Multiple Access Networks

    Full text link
    In this paper, we study the resource allocation and user scheduling problem for a downlink nonorthogonal multiple access network where the base station allocates spectrum and power resources to a set of users. We aim to jointly optimize the sub-channel assignment and power allocation to maximize the weighted total sum-rate while taking into account user fairness. We formulate the sub-channel allocation problem as equivalent to a many-to-many two-sided user-subchannel matching game in which the set of users and sub-channels are considered as two sets of players pursuing their own interests. We then propose a matching algorithm which converges to a two-side exchange stable matching after a limited number of iterations. A joint solution is thus provided to solve the sub-channel assignment and power allocation problems iteratively. Simulation results show that the proposed algorithm greatly outperforms the orthogonal multiple access scheme and a previous non-orthogonal multiple access scheme.Comment: Accepted as a regular paper by IEEE Transactions on Wireless Communication
    • …
    corecore